Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(11): e0143023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37861335

ABSTRACT

IMPORTANCE: Being obligate parasites, viruses use various host cell machineries in effectively replicating their genome, along with virus-encoded enzymes. In order to carry out infection and pathogenesis, viruses are known to manipulate fundamental cellular processes in cells and interfere with host gene expression. Several viruses interact with the cellular proteins involved in the Wnt/ß-catenin pathway; however, reports regarding the involvement of protein components of the Wnt/ß-catenin pathway in Chikungunya virus (CHIKV) infection are scarce. Additionally, there are currently no remedies or vaccines available for CHIKV. This is the first study to report that modulation of the Wnt/ß-catenin pathway is crucial for effective CHIKV infection. These investigations deepen the understanding of the underlying mechanisms of CHIKV infection and offer new avenue for developing effective countermeasures to efficiently manage CHIKV infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , beta Catenin/metabolism , Chikungunya Fever/metabolism , Chikungunya Fever/virology , Chikungunya virus/physiology , Virus Replication , Wnt Signaling Pathway
2.
Biochem Biophys Res Commun ; 682: 56-63, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37801990

ABSTRACT

In this work, we investigated the presence and function of TRPM8, a non-selective and cold-sensitive Ca2+-permeable ion channel in the primary microglia cell as well as in microglia cell line BV2. We demonstrate that primary microglia as well as BV2 express TRPM8 endogenously. Both pharmacological activation or inhibition of TRPM8 causes enhanced uptake of bacterial particles at early time points of infection. In BV2, TRPM8 activation and/or LPS-signaling alters its surface expression and cytosolic ROS production. TRPM8 modulation in the absence and presence of LPS causes differential regulation of cytosolic pH and lysosomal pH. Notably, TRPM8 modulation also alters the correlation between lysosomal pH and cytosolic pH depending on TRPM8 modulation and the presence or absence of LPS. Collectively our data suggest that TRPM8 is involved in the regulation of subcellular organelle, i.e. mitochondrial and lysosomal functions. Data also suggest that primarily TRPM8 activation, but often deviation from endogenous TRPM8 function is linked with better innate immune function mediated by microglial cells. We suggest that TRPM8-mediated regulations of sub-cellular organelle functions are more context-dependent manner. Such understanding is relevant in the context of microglial cell functions and innate immunity.


Subject(s)
Microglia , TRPM Cation Channels , Cell Line , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Microglia/metabolism , Mitochondria/metabolism , Phagocytes/metabolism , TRPM Cation Channels/metabolism , Animals , Mice
3.
BMC Immunol ; 24(1): 16, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391696

ABSTRACT

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS: Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION: This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.


Subject(s)
HSP90 Heat-Shock Proteins , Macrophage Activation , TRPA1 Cation Channel , Animals , Humans , Mice , Acetamides , Down-Regulation , Lipopolysaccharides , Macrophages , RAW 264.7 Cells
4.
Front Immunol ; 14: 1139808, 2023.
Article in English | MEDLINE | ID: mdl-37153546

ABSTRACT

Toll like receptor 4 (TLR4), a pathogen-associated molecular pattern (PAMP) receptor, is known to exert inflammation in various cases of microbial infection, cancer and autoimmune disorders. However, any such involvement of TLR4 in Chikungunya virus (CHIKV) infection is yet to be explored. Accordingly, the role of TLR4 was investigated towards CHIKV infection and modulation of host immune responses in the current study using mice macrophage cell line RAW264.7, primary macrophage cells of different origins and in vivo mice model. The findings suggest that TLR4 inhibition using TAK-242 (a specific pharmacological inhibitor) reduces viral copy number as well as reduces the CHIKV-E2 protein level significantly using p38 and JNK-MAPK pathways. Moreover, this led to reduced expression of macrophage activation markers like CD14, CD86, MHC-II and pro-inflammatory cytokines (TNF, IL-6, MCP-1) significantly in both the mouse primary macrophages and RAW264.7 cell line, in vitro. Additionally, TAK-242-directed TLR4 inhibition demonstrated a significant reduction of percent E2-positive cells, viral titre and TNF expression in hPBMC-derived macrophages, in vitro. These observations were further validated in TLR4-knockout (KO) RAW cells. Furthermore, the interaction between CHIKV-E2 and TLR4 was demonstrated by immuno-precipitation studies, in vitro and supported by molecular docking analysis, in silico. TLR4-dependent viral entry was further validated by an anti-TLR4 antibody-mediated blocking experiment. It was noticed that TLR4 is necessary for the early events of viral infection, especially during the attachment and entry stages. Interestingly, it was also observed that TLR4 is not involved in the post-entry stages of CHIKV infection in host macrophages. The administration of TAK-242 decreased CHIKV infection significantly by reducing disease manifestations, improving survivability (around 75%) and reducing inflammation in mice model. Collectively, for the first time, this study reports TLR4 as one of the novel receptors to facilitate the attachment and entry of CHIKV in host macrophages, the TLR4-CHIKV-E2 interactions are essential for efficient viral entry and modulation of infection-induced pro-inflammatory responses in host macrophages, which might have translational implication for designing future therapeutics to regulate the CHIKV infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Toll-Like Receptor 4 , Animals , Mice , Inflammation , Macrophages , Molecular Docking Simulation , Viral Envelope Proteins , Virus Replication
5.
J Virol ; 96(23): e0133422, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36377875

ABSTRACT

Viruses utilize a plethora of strategies to manipulate the host pathways and hijack host machineries for efficient replication. Several DNA and few RNA viruses are reported to interact with proteins involved in DNA damage responses (DDRs). As the DDR pathways have never been explored in alphaviruses, this investigation intended to understand the importance of the DDR pathways in chikungunya virus (CHIKV) infection in vitro, in vivo, and ex vivo models. The study revealed that CHIKV infection activated the Chk2 and Chk1 proteins associated with the DDR signaling pathways in Vero, RAW264.7, and C2C12 cells. The comet assay revealed an increase in DNA damage by 95%. Inhibition of both ATM-ATR kinases by the ATM/ATR kinase inhibitor (AAKi) showed a drastic reduction in the viral particle formation in vitro. Next, the treatment of CHIKV-infected C57BL/6 mice with this drug reduced the disease score substantially with a 93% decrease in the viral load. The same was observed in human peripheral blood mononuclear cell (hPBMC)-derived monocyte-macrophage populations. Additionally, silencing of Chk2 and Chk1 reduced viral progeny formation by 91.2% and 85.5%, respectively. Moreover, CHIKV-nsP2 was found to interact with Chk2 and Chk1 during CHIKV infection. Furthermore, CHIKV infection induced cell cycle arrest in G1 and G2 phases. In conclusion, this work demonstrated for the first time the mechanistic insights regarding the induction of the DDR pathways by CHIKV that might contribute to the designing of effective therapeutics for the control of this virus infection in the future. IMPORTANCE Being intracellular parasites, viruses require several host cell machineries for effectively replicating their genome, along with virus-encoded enzymes. One of the strategies involves hijacking of the DDR pathways. Several DNA and few RNA viruses interact with the cellular proteins involved in the DDR pathways; however, reports regarding the involvement of Chk2 and Chk1 in alphavirus infection are limited. This is the first study to report that modulation of DDR pathways is crucial for effective CHIKV infection. It also reveals an interaction of CHIKV-nsP2 with two crucial host factors, namely, Chk2 and Chk1, for efficient viral infection. Interestingly, CHIKV infection was found to cause DNA damage and arrest the cell cycle in G1 and G2 phases for efficient viral infection. This information might facilitate the development of effective therapeutics for controlling CHIKV infection in the future.


Subject(s)
Chikungunya Fever , Chikungunya virus , DNA Damage , Virus Replication , Animals , Humans , Mice , Chikungunya Fever/genetics , Chikungunya virus/physiology , Leukocytes, Mononuclear/metabolism , Mice, Inbred C57BL , RAW 264.7 Cells , Vero Cells , Chlorocebus aethiops , Cell Cycle Checkpoints
6.
Antimicrob Agents Chemother ; 66(7): e0046322, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35766508

ABSTRACT

The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 µM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Benzimidazoles , Chikungunya Fever/drug therapy , Humans , Isatin/analogs & derivatives , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Peptide Hydrolases/metabolism , Virus Replication
7.
Antimicrob Agents Chemother ; 66(1): e0148921, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34748384

ABSTRACT

Chikungunya virus (CHIKV) has reemerged as a global public health threat. The inflammatory pathways of the renin-angiotensin system (RAS) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) are usually involved in viral infections. Thus, telmisartan (TM), which is known to block the angiotensin 1 (AT1) receptor and activate PPAR-γ, was investigated for activity against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero cells, RAW 264.7 cells, and human peripheral blood mononuclear cells [hPBMCs]) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (50% inhibitory concentration (IC50) of 15.34 to 20.89 µM in the Vero cells and RAW 264.7 cells, respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of the CHIKV life cycle with efficacy during pretreatment and posttreatment. Moreover, the agonist of the AT1 receptor and an antagonist of PPAR-γ increased CHIKV infection, suggesting that the antiviral potential of TM occurs through modulating host factors. In addition, reduced activation of all major mitogen-activated protein kinases (MAPKs), NF-κB (p65), and cytokines by TM occurred through the inflammatory axis and supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at a human equivalent dose, TM abrogated CHIKV infection and inflammation significantly, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC-derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in the future for repurposing against CHIKV.


Subject(s)
Chikungunya Fever , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases , PPAR gamma , Receptor, Angiotensin, Type 1 , Animals , Chikungunya Fever/drug therapy , Chlorocebus aethiops , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , Receptor, Angiotensin, Type 1/metabolism , Telmisartan/pharmacology , Vero Cells
8.
Arch Virol ; 166(1): 139-155, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33125586

ABSTRACT

Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5'-iodoresiniferatoxin (5'-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.


Subject(s)
Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Macrophages/drug effects , TRPV Cation Channels/metabolism , Animals , Cell Line , Chikungunya Fever/metabolism , Chikungunya Fever/virology , Diterpenes/pharmacology , Macrophages/metabolism , Macrophages/virology , Mice , RAW 264.7 Cells , Virus Replication/drug effects
9.
Front Immunol ; 10: 786, 2019.
Article in English | MEDLINE | ID: mdl-31031770

ABSTRACT

Chikungunya virus (CHIKV), a mosquito-borne Alphavirus, is endemic in different parts of the globe. The host macrophages are identified as the major cellular reservoirs of CHIKV during infection and this virus triggers robust TNF production in the host macrophages, which might be a key mediator of virus induced inflammation. However, the molecular mechanism underneath TNF induction is not understood yet. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV to address the above-mentioned question. It was observed that CHIKV induces both p38 and JNK phosphorylation in macrophages in a time-dependent manner and p-p38 inhibitor, SB203580 is effective in reducing infection even at lower concentration as compared to the p-JNK inhibitor, SP600125. However, inhibition of p-p38 and p-JNK decreased CHIKV induced TNF production in the host macrophages. Moreover, CHIKV induced macrophage derived TNF was found to facilitate TCR driven T cell activation. Additionally, it was noticed that the expressions of key transcription factors involved mainly in antiviral responses (p-IRF3) and TNF production (p-c-jun) were induced significantly in the CHIKV infected macrophages as compared to the corresponding mock cells. Further, it was demonstrated that CHIKV mediated TNF production in the macrophages is dependent on p38 and JNK MAPK pathways linking p-c-jun transcription factor. Interestingly, it was found that CHIKV nsP2 interacts with both p-p38 and p-JNK MAPKs in the macrophages. This observation was supported by the in silico protein-protein docking analysis which illustrates the specific amino acids responsible for the nsP2-MAPKs interactions. A strong polar interaction was predicted between Thr-180 (within the phosphorylation lip) of p38 and Gln-273 of nsP2, whereas, no such polar interaction was predicted for the phosphorylation lip of JNK which indicates the differential roles of p-p38 and p-JNK during CHIKV infection in the host macrophages. In summary, for the first time it has been shown that CHIKV triggers robust TNF production in the host macrophages via both p-p38 and p-JNK/p-c-jun pathways and the interaction of viral protein, nsP2 with these MAPKs during infection. Hence, this information might shed light in rationale-based drug designing strategies toward a possible control measure of CHIKV infection in future.


Subject(s)
Chikungunya Fever/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Viral Nonstructural Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Biomarkers , Chikungunya Fever/virology , Chikungunya virus , Chlorocebus aethiops , Female , Host-Pathogen Interactions , Macrophages/immunology , Male , Mice , Models, Molecular , Phosphorylation , Protein Binding , RAW 264.7 Cells , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...